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SINGULAR SOLUTIONS FOR AN ANISOTROPIC PLATE

WITH AN ELLIPTICAL HOLE

UDC 539.3V. N. Maksimenko and E. G. Podruzhin

A solution of the bending problem for a plate with an elliptical hole subjected to a point force (a sin-
gular solution) is obtained using the engineering theory of thin anisotropic plates and Lekhnitskii’s
complex potentials. The solution is constructed by conformal mapping of the exterior of the ellip-
tical hole onto the exterior of a unit circle with evaluation of the Cauchy-type integrals over closed
contours. Different versions of the boundary conditions on the holw contour are considered. In the
limiting case where the ellipse becomes a slot, the solution describes the bending of a plate with a
rectilinear crack or a rigid inclusion.

Key words: bending, anisotropic and isotropic materials, conformal mapping, Cauchy-type inte-
gral, unit circle.

Let a point bending moment m∗ = mx+imy be applied at the point with coordinates τ = ξ+iη in an infinite
anisotropic plate with an elliptical hole Λ (Fig. 1). Boundary conditions for the bending moments and transverse
shear force (static conditions) or deflections and slopes (kinematic conditions) are specified on the hole contour. The
solution of this problem reduces to constructing two analytic functions Fν(zν) governing the stress–strain state of
the plate, where zν = x + µνy are generalized complex coordinates (ν = 1, 2) and µν are roots of the characteristic
equation (µ1 6= µ2) [1].

The static boundary conditions are written in complex form as follows [1]:

2 Re
2∑

ν=1

pν

µν
ϕν(tν) = −

s(t)∫
0

(m dy + f dx)− Cx + C1,

2 Re
2∑

ν=1

qνϕν(tν) =

s(t)∫
0

(−m dx + f dy) + Cy + C2, t ∈ Λ, (1)

ϕν(tν) = F ′
ν(tν), f(s) =

s(t)∫
0

p(s0) ds0.

Here m(s) and p(s) are the normal bending moments and transverse shear forces distributed along the contour and
C, C1, and C2 are unknown real constants. Integration is performed along the arc of the contour from the starting
point to the current point. Below, the contour is assumed to be traction-free [m(s) = 0 and p(s) = 0].

For a plate subjected to a point bending moment applied at an internal point, the complex potentials are
given by

ϕν(zν , τν) = Bν ln (zν − τν) + ϕν0(zν , τν).
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Fig. 1

Here ϕν0(zν , τν) are functions holomorphic in the exterior of the elliptical holes Λν that correspond to Λ for the
affine transformation zν = x + µνy and Bν are complex constants determined from the system

2∑
ν=1

(µk−2
ν Bν − µ̄k−2

ν B̄ν) = fk (k = 1, 4 ),

f1 = − my

2πiD11
, f4 = − mx

2πiD22
, fj = 0 (j = 2, 3 ).

Here the constants Dmn are the flexural rigidities of the plate.
We multiply the first relation in the boundary conditions (1) by −q3−ν and the second relation by p3−ν/µ3−ν .

Summing the resulting relations and collecting terms containing ϕ1(t1), ϕ1(t1), ϕ2(t2), and ϕ2(t2), we write bound-
ary conditions (1) as

ϕν(tν)− lνϕ1(t1)− nνϕ2(t2) = f∗ν (t),

f∗ν (t) =
(
qν

p3−ν

µ3−ν
− q3−ν

pν

µν

)−1(
− q3−νf1(t) +

p3−ν

µ3−ν
f2(t)

)
, t ∈ Λ, (2)

f1(t) = −
s(t)∫
0

(m dy + f(t) dx)− Cx + C1, f2(t) =

s(t)∫
0

(−m dx + f(t) dy) + Cy + C2,

lν =
q3−ν

p̄1

µ̄1
− q̄1

p3−ν

µ3−ν

qν
p3−ν

µ3−ν
− q3−ν

pν

µν

, nν =
q3−ν

p̄2

µ̄2
− q̄2

p3−ν

µ3−ν

qν
p3−ν

µ3−ν
− q3−ν

pν

µν

.

Using the conformal mapping of the exterior of the unit circle γ = {|σ| = 1} onto the exterior of the elliptical
holes in the planes zν = x + µνy

zν =
a− iµνb

2
ζν +

a + iµνb

2
1
ζν

= ων(ζν), |ζν | > 1

and the inverse functions

ζν = ζν(zν) = (zν +
√

z2
ν − (a2 + µ2

νb2) )/(a− iµνb)

and introducing the notation ϕ∗
ν(ζν , ην) = ϕν(zν , τν) and ην = ζν(τν), we obtain the following expressions for the

boundary values of the functions ϕ∗
ν(ζν , ην) on γ:

ϕ∗
ν(σ, ην)− lνϕ∗

1(σ, η1)− nνϕ∗
2(σ, η2) = f∗ν (σ),

ϕ∗
ν(ζν , ην) = Bν ln (ζν − ην) + ϕ∗

ν0(ζν , ην).
(3)

Here ϕ∗
ν0(ζν , ην) are unknown functions analytic outside the unit circle γ.
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We multiply both sides of the boundary condition (3) by dσ/(σ − ζν), where ζν lies in the exterior of the
unit circle, and evaluate the Cauchy-type integrals for the functions determined on the unit circle contour [2].
Relations (3) imply the following expressions for ϕ∗

ν0(ζν , ην):

ϕ∗
ν0(ζν , ην) = lνB̄1 ln

ζν η̄1 − 1
ζν η̄1

+ nνB̄2 ln
ζν η̄2 − 1

ζν η̄2
+

CDν

ζν
,

Dν =
1
2

(
aq3−ν + ib

p3−ν

µ3−ν

)(
qν

p3−ν

µ3−ν
− q3−ν

pν

µν

)−1

.

(4)

To determine the unknown constant C in relation (4), one should employ the condition that the deflection
is a single-valued function in circulation about the unit circle γ

2 Re
{ 2∑

ν=1

Fν(zν)
}

L
= 0.

This relation implies the following formula for the constant (for a traction-free hole)

C = Im
2∑

ν=1

a− iµνb

2

(
lν

B̄1

η̄1
+ nν

B̄2

η̄2

)[
Im

2∑
ν=1

a− iµνb

4
aq3−ν + ibp3−ν/µ3−ν

qνp3−ν/µ3−ν − q3−νpν/µν

]−1

.

The bending and twisting moments in the plate are given by [1]

(Mx,My,Hxy) = −2 Re
{ 2∑

ν=1

(pν , qν , rν)Φν(zν)
}

,

Φν(zν) =
dϕν(ζν , ην)

dζν
[ω′

ν(ζν)]−1.

The potentials Φ∗
ν(ζν , ην) = ϕ∗′

ν (ζν , ην) become

Φ∗
ν(ζν , ην) =

Bν

ζν − ην
+

B̄1lν
ζν(ζν η̄1 − 1)

+
B̄2nν

ζν(ζν η̄2 − 1)
− CDν

ζ2
ν

. (5)

The kinematic conditions on the elliptical-hole contour are written as [1]

2 Re
2∑

ν=1

Fν(tν) = w∗(s), 2 Re
2∑

ν=1

ϕν(tν)(µν sinϑ + cos ϑ) =
∂w∗

∂n
(t ∈ Λ)

and can be reduced, using the method described above (differentiation of the first condition with respect to the arc
length s) to relations of the form (2), in which one should set

f∗ν (t) =
f2(t)− µ3−νf1(t)

µν − µ3−ν
, lν =

µ3−ν − µ̄1

µν − µ3−ν
, nν =

µ3−ν − µ̄2

µν − µ3−ν
,

f1(t) = −∂w∗

∂s
sinϑ +

∂w∗

∂n
cos ϑ, f2(t) =

∂w∗

∂s
cos ϑ +

∂w∗

∂n
sinϑ.

Here w∗ and ∂w∗/∂n are the deflections and slopes specified at the edge of the elliptical hole, respectively, and
ϑ is the angle between the normal to the hole contour and the x axis. If the deflections and slopes on the hole
contour vanish, the boundary condition becomes homogeneous. The expressions for the complex potentials [2] can
be obtained in a similar way to Eqs. (4). In the case of a point moment, the functions are expressed as ϕ∗

ν0(ζν , ην)
as

ϕ∗
ν0(ζν , ην) = lνB̄1 ln

ζν η̄1 − 1
ζν η̄1

+ nνB̄2 ln
ζν η̄2 − 1

ζν η̄2
.

In the problem considered, we obtain the following formula for the complex potentials Φ∗
ν(ζν , ην):

Φ∗
ν(ζν , ην) =

Bν

ζν − ην
+

B̄1lν
ζν(ζν η̄1 − 1)

+
B̄2nν

ζν(ζν η̄2 − 1)
.

The last two formulas can be obtained from (4) and (5) by setting C = 0.
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TABLE 1

Material
number.

E1 · 10−4, MPa E2 · 10−4, MPa E1/E2 ν1 G · 10−4, MPa

1 27.610 27.610 1 0.25 11.044
2 27.610 2.761 10 0.25 1.035

It is not possible to solve the plate problem subject to mixed boundary conditions on the hole contour (for
example, a simply supported contour) using the method described above because the boundary conditions for the
function ϕ∗

ν(ζν , ην) on the unit circle contour γ cannot be written in the form of (3).
We consider some numerical results obtained by the formulas given above. Figure 2 shows the distribution of

the bending and twisting moments My (solid curve), Mx (dotted curve), Hxy (dashed curve), Mn (dot-and-dashed
curve) along the clamped edge of an elliptical hole (b/a = 0.5) in a plate subjected to a point bending moment mx

at a point lying on the continuation of the minor axis of the ellipse. The coordinate of the load application point is
0.9a, the plate material is boron–epoxy composite (material No. 2 in Table 1), and the angle between the principal
anisotropy direction E1 and the x axis is ϕ = π/2. Figure 3 shows the distribution of the bending and twisting
moments My, Mx, Hxy, and Mn (notation same as in Fig. 2) in the boron–epoxy composite plate for ϕ = 0. The
stress concentration on the plate contour is substantially reduced (by a factor of two) in this case. By virtue of
symmetry, only one quarter of the ellipse is shown in Fig. 3.

Figure 4 shows the distribution of the bending and twisting moments My, Mx, Hxy, and Mn (notation same
as in Fig. 2) along the hole contour of an isotropic plate (material No. 1 in Table 1). Here and below, the numerical
results for the isotropic material (µ1,2 = ±α + iβ for an orthotropic material with ϕ = 0) were obtained by passing
to the limit as α → 0 and β → 1. In fact, we used the value of one of the elastic moduli (for example, the shear
modulus G) in the isotropic material that differ from the exact value by a few hundredths of a percent. Numerical
analysis shows that the error of the results does not exceed the error in approximating the elastic characteristic of
the material. For this approximation, the predicted stresses are accurate to five or six significant figures.

Figure 5 shows the distribution of the bending and twisting moments along the traction-free edge of an
elliptical hole (b/a = 0.5) in a plate loaded by a point bending moment mx applied to a point lying on the
continuation of the minor axis of the ellipse. Here Mθ denotes the bending moments in areas normal to the hole
contour (light solid curve and the remaining notation is same as in Fig. 2). The coordinate of the load application
point is 0.9a and the plate material is isotropic. Figure 6 shows the stress distribution in the same plate loaded by
the point bending moment my. In this problem for an orthotropic plate (ϕ = 0, π/2), the real constant C vanishes
if the bent surface has a plane of symmetry (for example, if the point moment mx acts on the continuation of the
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minor axis of the ellipse). In the remaining cases, the constant is nonzero and depends on the type of load and its
coordinate.

The technique described above can be used not only in the case of point loads. We consider the same plate
with an elliptical hole clamped along the hole contour under the action of moments distributed uniformly at infinity.
In this case, the stress–strain state (SSS) can be obtained by summing the SSS in the plate without a hole and the
perturbed SSS due to the hole. For the plate without a hole, the complex potentials describing the homogeneous
stress field are given by

ϕν(zν) = B∗
νzν + Gν ,

where Gν are arbitrary complex constants and the constants B∗
ν are determined from the system [1]

−2 Re
{ 2∑

ν=1

pνB∗
ν

}
= Mx0, −2 Re

{ 2∑
ν=1

qνB∗
ν

}
= My0, −2 Re

{ 2∑
ν=1

rνB∗
ν

}
= Hxy0, Re {B∗

1} = 0.

Here Mx0, My0, and Hxy0 are uniform loads at infinite distance from the hole.
The functions ϕ∗

ν(ζν) describing the SSS of the plate with a hole become

ϕ∗
ν(ζν) = B∗

ν

(a− iµνb

2
ζν +

a + iµνb

2
1
ζν

)
+ ϕ∗

ν0(ζν).
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Here ϕ∗
ν0(ζν) are unknown functions analytic outside the hole contour that describe the SSS perturbations induced

by the hole. The expressions of the complex potentials are derived similarly to relations (4):

ϕ∗
ν(ζν) = B∗

ν

a− iµνb

2
ζν +

1
ζν

[
lνB̄∗

1

a + iµ̄1b

2
+ nνB̄∗

2

a + iµ̄2b

2

]
.

If stresses are specified on the hole contour, the right side of the boundary conditions (2) and, hence, (3)
contain the unknown real constants C, C1, and C2 [see (1)]. The real constants C1 and C2 specify the rigid-body
rotation of the plate and have no effect on the stresses. To determine the real constant C, it is necessary to use
the additional condition — the deflection should be a single-valued function in circulation about the elliptic-hole
contour. For the traction-free contour, this condition yields

C = −
Im

2∑
ν=1

a− iµνb

2

(
−B∗

ν

a + iµνb

2
+ lνB̄∗

1

a + iµ̄1b

2
+ nνB̄∗

2

a + iµ̄2b

2

)
Im

2∑
ν=1

a− iµνb

4

(
aq3−ν + ib

p3−ν

µ3−ν

)(
qν

p3−ν

µ3−ν
− q3−ν

pν

µν

)−1
.

In this case, the complex potentials become

ϕ∗
ν(ζν) = B∗

ν

a− iµνb

2
ζν +

1
ζν

[
lνB̄∗

1

a + iµ̄1b

2
+ nνB̄∗

2

a + iµ̄2b

2
+ CDν

]
,

Φν(zν) =
1

ω′
ν(ζν)

[
B∗

ν

a− iµνb

2
− 1

ζ2
ν

(
lνB̄∗

1

a + iµ̄1b

2
+ nνB̄∗

2

a + iµ̄2b

2
+ CDν

)]
.

(6)

Figure 7 shows the distribution of the bending and twisting moments My, Mx, Hxy, and Mn (notation same
as in Fig. 2) along the contour of the elliptical hole in the plate (in the areas coinciding with the contour line)
for the case of a clamped hole edge (w∗ = 0 and ∂w∗/∂n = 0). The numerical solution was compared with the
results of Lekhnitskii [1], who obtained closed-form solution for an orthotropic plate with a rigid circular inclusion.
Excellent agreement between the solutions is observed.

Figure 8 shows the distribution of the moments My, Mx, Hxy, and Mθ (notation same as in Fig. 2) along
the traction-free contour of an elliptical hole (the first boundary-value problem) in a boron–epoxy composite plate
(ϕ = π/2). The maximum bending moment Mθ max = 4.9120My0 occurs at the points (±a, 0). The numerical
results agree with the solution for an anisotropic plate with a traction-free circular hole [1].

Setting b = 0 in (6), we obtain the solution of the problem of an infinite plate with a rectilinear crack (rigid
inclusion). The complex potentials Φν(zν) become
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Φν(zν) =
1

2
√

zν − a
√

zν + a

[
B∗

νJ(zν)− a2

J(zν)

(
B̄∗

ν lν + B̄∗
2nν + 2

CDν

a

)]
, J(zν) = zν +

√
z2
ν − a2.

The last relation implies that in the vicinity of the crack tip (rigid inclusion), the stresses have a singularity
of order 1/

√
ρ, where ρ is the distance from the crack tip [3]. In a similar manner, one can obtain the solution of

this problem for point loads [4]. In this case, the stress singularity at the crack tip has the same form: 1/
√

ρ.
For the case of an elliptical hole loaded by constant bending moments at the edge of the hole and a load

specified at infinity:

C = −
Im

2∑
ν=1

a− iµνb

2

(
−B∗

ν

a + iµνb

2
+ lνB̄∗

1

a + iµ̄1b

2
+ nνB̄∗

2

a + iµ̄2b

2

)
Im

2∑
ν=1

a− iµνb

4

(
aq3−ν + ib

p3−ν

µ3−ν

)(
qν

p3−ν

µ3−ν
− q3−ν

pν

µν

)−1

−m

Im
2∑

ν=1

a− iµνb

4

(
ibq3−ν − a

p3−ν

µ3−ν

)(
qν

p3−ν

µ3−ν
− q3−ν

pν

µν

)−1

Im
2∑

ν=1

a− iµνb

4

(
aq3−ν + ib

p3−ν

µ3−ν

)(
qν

p3−ν

µ3−ν
− q3−ν

pν

µν

)−1
. (7)

In formula (7), m is the intensity of the constant normal moments applied to the hole contour (the distributed
transverse load p = 0). In this case, the complex potentials become

ϕ∗
ν(ζν) = B∗

ν

a− iµνb

2
ζν +

1
ζν

[
lνB̄∗

1

a + iµ̄1b

2
+ nνB̄∗

2

a + iµ̄2b

2
+ CDν + mEν

]
,

Eν =
1
2

(
ibq3−ν − a

p3−ν

µ3−ν

)(
qν

p3−ν

µ3−ν
− q3−ν

pν

µν

)−1

.

Calculation results show that for orthotropic plate materials (ϕ = 0, π/2), the constant C is independent of
the semiaxes ratio of the ellipse, i.e., the value of this constant is the same for a circle and a rectilinear cut. The
constant C has a significant effect on the satisfaction of the boundary conditions on the hole contour and, hence,
on the stress–strain state of the plate.

Using (7), one can find the arbitrary constant in the bending problem for an infinite plate with a rectilinear
crack whose edges are subjected to bending moments of constant intensity [5] (in this case, it is necessary to set
b = 0 and B∗

ν = 0). It is worth noting that in this problem for an orthotropic plate material (ϕ = 0, π/2), the
constant C is identically equal to zero. If ϕ 6= 0, π/2, the constant is nonzero.

Based on the complex potentials obtained above, solutions can be constructed for point dislocations treated
as displacement discontinuities in a plate [4]. These solutions can be used to construct complex potentials in bending
problems for plates with an elliptical hole, through-thickness curvilinear cuts (cracks), and thin curvilinear rigid
inclusions. In this case, the complex potentials are written as singular integrals containing an unknown density
function determined from the conditions on the defect contour, which lead to a singular integral equation or a
system of integral equations subject to additional relations.
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